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We investigate the conditions under which a steady state can be reached in a 
two-dimensional diffusion-controlled trapping reaction. If there is no interaction 
between trap and diffusing particles, the reaction rate decreases monotonically 
to zero. Here we show that a logarithmic attractive potential between trap and 
diffusing particles leads to a finite steady-state reaction rate. A steady state can 
also be reached if the diffusing particles move under the action of a uniform 
external field. More unexpectedly, a steady-state rate can be obtained in the 
absence of any "assisting field" if the trap grows due to the absorption of the 
diffusing particles. The reaction rates are calculated in all cases. 

KEY WORDS: Trapping; droplet; diffusion-controlled reactions; steady state; 
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I. I N T R O D U C T I O N  

Diffusion-controlled reactions (DCRs) occur in many areas of physics, 
chemistry and biology. r 2) In practice, the corresponding diffusive processes 
are often effectively confined to a two-dimensional space. (3,4) Although 
two-dimensional diffusion is extensively discussed in textbooks, (5,6) no 
attention seems to have been paid to the interesting question of the 
existence and nature of a steady state (SS) in two-dimensional DCRs. The 
purpose of this paper is to examine the conditions under which such a SS 
may arise. Since the most interesting quantity in practical problems is the 
reaction rate, to avoid ambiguities we will call steady state to any state 
such that the reaction rate is independent of time. 
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It is well-known that, if we start with a uniform density of noninter- 
acting, mobile reactants, the flux into a fixed trap (i.e., the reaction rate) 
in two dimensions decreases asymptotically as 1/l.n(t). (6'7) The physical 
reason for the absence of steady state is the slow replenishment of the 
depletion region that surrounds the trap, which grows continuously. In 
higher-dimensional systems, on the other hand, there are more diffusion 
paths and a SS is eventually reached, tS' 9) Because of the slow divergence of 
the logarithm, we expect the two-dimensional problem to be marginal: any 
modification of the model that favours a faster replenishment of the trap 
neighbourhood should lead to a steady state. 

Following and slightly generalizing the conventional ideas in 
DCRs,(~, 10. ~) we assume that there is an infinite domain containing an 
initially uniform distribution of noninteracting diffusing particles, which 
may react with a fixed finite trap of characteristic size a. It is convenient to 
use the dimensionless space and time variables #=7/a. and r=Dt/a 2, 
where D is the diffusion coefficient. The evolution of the concentration 
C(/7, 3) is controlled by the diffusion equation 

ac= v~c, (1) 
& 

subject to the initial condition C(/7, 0 )=  Co. The boundary conditions are 
C(m, r ) =  Co and, at the trap surface, 

a c  
~ = F C .  (2) 
o~ 

Here F is the dimensionless trapping rate and ( is an (outwardly directed) 
coordinate normal to the trap surface. Equation (2) is usually termed the 
radiation boundary condition; (6) if F =  oo the trap is "perfect," otherwise 
the trap is "imperfect". 

A SS sohltion of Eq. (1) in cylindrical coordinates (p, 0) must have the 
form, 

Css(P, O)= [A + B In(p)] f(O). (3) 

Since the boundary condition at infinity demands that B = 0 ,  it is 
impossible to obtain a SS for any finite trap (except, obviously, for the 
perfect reflector case F =  0). The remainder of this paper will explore three 
different conditions under which a SS may arise. 
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I!. S T E A D Y  S T A T E  I" A C E N T R A L  FIELD 

The most obvious way of inducing a faster replenishment of the deple- 
tion region around the trap is to add a central, attractive potential V(p). 
In this case, Eqs. (1) and (2) must be generalized, respectively, to 

OC 
~=V2C+D-~V. (CVV) ,  (4) az 

and 

c, (5) 

evaluated at the trap surface. Arguably the most interesting potential in 
f 

this class is the two-dimensional Coulomb potential V=q In p.(12,13) It is 
easy to see that this potential leads to a SS for an arbitrary finite trap. The 
reason is that the radial flux j(p) far from the trap (where the concentra- 
tion varies slowly) is proportional to 1/p. Therefore, the total inward 
current across a circumference of radius p, J(p)= 2npj(p), tends to a finite 
value when p ~ oo. An analytical solution is possible if we consider a 
circular trap. Defining q '=  q/D, we see that the SS concentration solves the 
radial equation, 

02C ( l + q') OC 
Op 2 + p ap = O, (6) 

with the boundary condition that the radial derivative at the trap surface 
p =  1 must be equal to (F-q')  C(p = 1). We obtain, 

q t 
It is interesting that the "charge" appears in the exponent. The concentra- 
tion is plotted in Fig. 1 for F =  1 and several values of q'. While for 
weak absorption (q'/l'> 1), the concentration grows monotonically as we 
approach the trap, for strong absorption (q'/F< 1), it decreases mono- 
tonically. The concentration is everywhere constant if F=q'. On the 
other hand, the concentration at the trap edge, C(1)= q'Co/F, grows with 
decreasing F in such a way that it ensures that the reaction rate, 
I J( 1 )1 = q'Co is F-independent. 

In a recent paper, (~4) Koplik and co-workers studied a different aspect 
of the logarithmic potential problem. Supposing that the diffusing particle 
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Fig. 1. Steady-state concentration as a function of the dimensionless radius for a circular 
trap and a central logarithmic potential. Here F = 1 and the values of q ' - -q /D  are detailed in 
the figure. 

is confined to an annulus whose inner wall is a perfectly absorbing trap and 
whose outer wall is a perfect reflector, they calculated the transit-time 
probabilities for the cases of inward and outward flows. They also analyzed 
the case when the outer wall is the trap. Taken together their calculation 
and ours offer a detailed picture of diffusion in a two-dimensional radial 
flow of the form j(p)~ Alp and of the strong ("non-universal") dependence 
of the results on the magnitude of the amplitude A. 

It is easy to see that a SS can only occur for potentials whose 
asymptotic behaviour is logarithmic. If V(p) grows faster than In(p) as 
p ~ oo, the inward current diverges asymptotically and no SS is possible. 
A more interesting situation arises if the field is everywhere inwardly 
directed, but the potential tends asymptotically to a constant. Suppose for 
example that V(p)= 0cp-', n > 0, 0c < 0. Since the attractive field is strong 
near the trap, many particles fall into it at short times and the depletion 
zone evolves fast. However, the field is asymptotically very Weak and the 
convective current vanishes in the limit p ~ oo. Therefore, the depletion 
region will grow continuously and a SS will never be reached. Of course, 
a SS is attained if we restrict the diffusion space to an annulus whose 
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Fig. 2. Steady-state react ion rate as a function of  potent ia l  shape if the diffusion space is an 

annulus  whose outer  radius  is 8 - - 3 .  T rap  and  diffusing particles interact  t h rough  the central  

potent ial  V(p)=o~p-" (here 0c = - 1 and  Co = 1 ). Inset: the steady-state concent ra t ion  at p = 2 

as a function of  n. 

(dimensionless) outer radius is ~ and assume C(~)= Co. In this case, the 
result for a perfect trap is, 

C(p) = Coe='(a-"-p-") [ E i (d )  - E i ( d P - " )  1 
Ei( d ) - Ei( o( cS - " ) ' 

(8) 

where 0c' =oc/D and Ei(x) is the exponential integral. Note that C(p)--,O 
everywhere if ~ ~ oo. Starting from Eq. (8) it is straightforward to calculate 
the reaction rate. The variation of this rate with the exponent n is displayed 
in Fig. 2. Note that the rate is minimized if there is no field (the opposite 
is true for a repulsive power-law interaction, ~ > 0, for which Eq. (8) is still 
valid). The complicate dependence of the rate and concentration (detailed 
in the inset,) on n is due to the complex interplay of the variations of the 
radial force with p and n (but n = 0 and n = oo must yield the same result!). 

III. S T E A D Y  STATE I1: A U N I F O R M  FIELD 

A somewhat less evident procedure to replenish the depletion region is 
to introduce a uniform field, which we will characterize through the drift 
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velocity v. A moment's thought reveals that the effective number of 
particles brought into the trap neighbourhood by the resulting biasing field 
will be higher than the number effectively removed by the field. As a conse- 
quence, a SS may be established. In this case, it is convenient to use the 
dimensionless drift velocity W= va/2D and to rewrite Eq. (4) in terms of 
the dimensionless Cartesian pair (X, ~): 

02C 02C OC 
OX---2- + ~-~- + 2 W ~-~- = O. (9) 

Defining A = ~/W 2 "  b 2, where b is a separation constant, it is clear 
that we can write the solution to Eq. (9) as C(,Z, ~)= Co + Ct(X, ~), where 
C~ is a superposition of solutions of the form e x p ( - b  [ z l ) e x p [ -  
( W +  A)~]. I f ' W = 0  the solutions are oscillatory and the boundary condi- 
tion at infinity cannot be fulfilled. Any nonzero drift W, on the other hand, 
introduces a converging factor which ensures the fulfillment of the bound- 
ary condition and the existence of a steady state. 

This problem is discussed in detail in ref. 8. After Laplace transforming 
the time-dependent differential equation, we separate variables using polar 
coordinates (p, 0) and write the solution as an eigenfunction expansion. 
The expansion coefficients 0tj can be obtained by applying the boundary 
conditions. This leads to an equation of the form .//r =/7, where 0Z is the 
vector formed by the 0tj's. The elements of the tri-diagonal matrix .//r and 
the vector fl-" depend on F, W, and the Laplace variable. The SS concentra- 
tion C(p, O) is obtained by solving the matrix equation numerically. This 
method allows a careful discussion of the properties of the SS solution. The 
contour plots show that an enhanced concentration region usually arises 
upstream an imperfect trap, while a depletion zone appears downstream. 
Once the concentration is known, we can calculate the particle flux into the 
trap and, upon an angular integration, we obtain the SS reaction rate, 
which is observed to increase monotonically with F and W. 

Since there is no steady state in the absence of a field, it is of particular 
interest to analyze the properties of the SS concentration and reaction rate 
in the limit W ~  0. By approximating the relevant entries in .A/and/7, we 
can solve the matrix equation analytically. For the concentration we find, 

E+ln(Wp/2) '~ 
C(p)- Co 1 i/r/' (10) 

with E=0.5772... being the Euler constant. (15) This solution is valid for a 
circular trap in the region p ,~ W -1, which becomes arbitrarily large as 
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W--+ 0. Note that the problem is isotropic in this approximation. The SS 
reaction rate is 

2/t 
J =  l n ( W / 2 ) + E - 1 / F "  (11) 

The ubiquitous presence of the logarithms indicates the marginality of the 
two-dimensional problem. 

In the opposite limit of strong fields, the current at the trap is 
completely convection-controlled and has the form 

J( t ~ oo, v ~ oo ) = 2avG( F) Co, (12) 

where 2a is the trap cross section and G is a monotonically increasing 
function of F that satisfies G(0)=0  (perfect reflector) and G ( ~ ) =  1 
(perfect trap). 

IV. STEADY STATE II1: A G R O W I N G  TRAP 

The nature of the SS to be discussed in this Section is completely 
different. Instead of introducing a field that helps to replenish the depletion 
region, we will let the trap grow into it, while preserving its shape. If the 
trap is an effectively two-dimensional (pancake-shaped) droplet that grows 
due to the absorption of the trapped particles at its surface, the reaction 
rate tends to a constant. 

The number n(t) of particles contained in the droplet can be expressed 
as n( t )=  na2(t) Ci, where Ci is the particle density inside the droplet. If Ct 
is constant we can calculate the droplet growth rate in terms of the reaction 
rate J[ a(t) ] using the relation 

f f t t 1/2 1 J[a(t ' )]  dt' (13) 
a ( t )  = ,o 

where ao = a(to) is the droplet radius at the initial time to. This is actually 
an integral equation for the droplet radius. The problem can be simplified 
by the use of the following adiabatic approximation: (9) If the droplet 
growth is slow enough, we can consider the distribution of the mobile 
particles to be that corresponding to a fixed-radius trap whose radius is 
equal to the true instantaneous trap radius. In this case, we can use the 
known expressions for the particle flux to a trap of fixed radius. (6' 7) This 
approximation is suitable if the length a particle diffuses is much longer 
than the increment in the radius in the same time interval. In practice, this 



will imply that we must demand that Co ,~ Ci, a condition that should be 
generally met. For simplicity we consider here only the case in which the 
droplet is modelled by a perfect trap. In this case, the current into a 
fixed-radius trap of radius a is 

J(t) =~8C~ f :  ~dx e_tnt/d) x2 _- 
re x [Jo(x)] 5 + [ Y o ( x ) ]  2 - C~ (14) 

where Jo and Yo are Bessel functions. This suggests setting a( t )=At  1/2. 
Eq. (14) may then be written as, 

I f t  I 1/2 Co F(AE) d t, (15) At'/2= a2 + - ~ i  'o 

If CoF(A2)(t - to) >> zcC, a 2, this reduces to, 

C, AE = CoF(A 2) (16) 

100 

We have solved Eq. (15) numerically, inserting J(t) from Eq. (14) and 
choosing to=0  and ao = 1. Some of our results are presented in Fig. 3, 
where we show the time dependence of the droplet radius for several values 
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Fig. 3. Time dependence of the droplet radius for the values of the ratio between the inner 
and outer concentrations detailed in the figure. All drops start with unit radius at t = 0. 
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of the parameter Co/Ci. The long-time t 1/2 dependence is evident. The reac- 
tion rate F(A 2) becomes t-independent and the system reaches a steady 
state (with a growing trap). 

Remark. In the case of a droplet growing in a medium where the 
particles are also subject to a strong drift v, the droplet radius will grow as 
a(t),.~ [(Co/Ci) vt]  1/2. 
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